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Abstract

Cutting and packing problems involving irregular shapes is an important problem variant with a wide variety of indus-
trial applications. Despite its relevance to industry, research publications are relatively low when compared to other cutting
and packing problems. One explanation offered is the perceived difficulty and substantial time investment of developing a
geometric tool box to assess computer generated solutions. In this paper we set out to provide a tutorial covering the core
geometric methodologies currently employed by researchers in cutting and packing of irregular shapes. The paper is not
designed to be an exhaustive survey of the literature but instead will draw on the literature to illustrate the theory and
implementation of the approaches. We aim to provide a sufficiently instructive description to equip new and current
researchers in the area to select the most appropriate methodology for their needs.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Cutting and packing problems involving irregu-
lar shapes arise in a wide variety of industries
including; garment manufacturing, sheet metal cut-
ting, furniture making and shoe manufacturing.
An example of a layout from the garment manufac-
turing industry is provided in Fig. 1. As a result the
range of problem variants involving irregular
shapes, referred to here as nesting problems, is a
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core area of research in the field of cutting and
packing. The problem is NP-complete and as a
result solution methodologies predominantly utilise
heuristics. A further defining characteristic of nest-
ing problems is the requirement to develop power-
ful geometric tools to handle the wide variety and
complexity of shapes that need to be packed. In
this paper we propose to provide detailed explana-
tions of the most popular techniques for handling
the geometry when solving nesting problems and
provide guidance on their implementation, strengths
and weaknesses.

The remainder of this paper is organized in six
sections. In the next section the nesting problem is
defined more precisely and the key differences
.
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Fig. 1. An example layout from garment manufacturing.
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between nesting problems and other cutting and
packing problems are highlighted. In particular,
the importance of the geometry is explained. In Sec-
tion 3 geometric approaches based on pixel or raster
representations are introduced. In Section 4 the con-
cept of the D function is presented including algo-
rithms to handle geometric tasks that use this
function. In the following section, the nofit polygon
is introduced and two different algorithms for its
generation are described, one based on the sliding
analogy and another using Minkowski sums. Poly-
gon decomposition is also discussed in this section.
In Section 6 the concept of Phi function is presented
with illustrative examples.

2. Problem definition

Nesting problems are one of many terms used to
identify the group of problems that will be dis-
cussed. A discussion of nomenclature is beyond
the scope of this paper, however, it is helpful to
identify the other names under which these prob-
lems are referenced. Some commonly used terms
are irregular shape stock cutting, irregular packing,
polygon placement, marker making, non-convex
cutting stock, 2-D packing problems or some com-
bination of any of these terms. The term nesting

problems is adopted in this paper and can be defined
as follows:

where more than one piece of irregular shape must
be place in a configuration with the other piece(s)
in order to optimise an objective

Irregular shapes are defined as simple polygons,
and in some cases, polygons that may contain holes.
When pieces include curved edges, it is common to
approximate them by an enclosing polygon, where
a series of tangents to the curve form the polygonal
edges. Recently new research has emerged that per-
mit the curved edges to be retained in their original
form. It is appropriate at this point to consider
whether shapes such as circles or triangles would
be classified as nesting problems. There is no clear
conclusion that can be drawn from the literature.
However, we suggest that problems that involve
non-trivial handling of the geometry would be clas-
sified as a nesting problem. Hence circles are not,
since overlap can be detected simply by evaluating
the distance between the centres of two candidate
circles.

The above definition is clearly very general and
within it many variants of the problem can be
defined. These can be identified through a number
of key characteristics; homogeneity/heterogeneity
of the data; stock sheet size, shape, number and
quality (with respect to the homogeneity of the
stock sheet surface); and single or multi objective.

Dyckhoff (1990) proposed a useful classification
of cutting and packing problems. His classification
partitioned the problems by four fundamental crite-
ria; dimensionality, objective of the assignment,
large objects and small items. Dimensionality is
divided by one-dimensional, two-dimensional,
three-dimensional and n-dimensional, where n is
great than 3. The type of assignment was parti-
tioned into: those problems that require all the
pieces to be arranged hence minimising waste and
those that select and arrange a subset of pieces
hence maximising the profit gained from those
pieces. The large objects are the stock sheets and
may either be single, multiple and identical, or mul-
tiple and different. Finally, the small items are the
pieces that are partition according to the number
and level of homogeneity. Dyckhoff’s typology has
since been revised by Waescher et al. (2005) in order
to remove some ambiguity that has arisen since its
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publication and provide a more intuitive classifica-
tion of problem variants. Their typology retains
the first two detailed by Dyckhoff; dimensionality
and objective of the assignment. The categories for
large object and small objects are redefined, and a
new characteristic is identified; shape of the small
items. Using Waescher, Hauber and Schumann’s
typology, nesting problems, in general, would be
placed in the open-dimension problem category, with
the refinement of being two-dimensional and irregu-
lar. The new typology provides a useful progression
towards a consistent nomenclature for cutting and
packing problems.

2.1. How is nesting different from other cutting and

packing problems?

A comparison of the physical attributes of cut-
ting and packing problems in order to group them
has already been addressed through the discussion
of the typology. Here we are interested in the two-
dimensional problems, which can be further parti-
tioned into regular packing and irregular packing.
These differences are tangible and observable; per-
haps the more important question is how these dif-
ferences influence the approaches we might take to
solve the problem. The paper will discuss the
increased complexity of ensuring pieces are allo-
cated to feasible placement position when they are
irregular. However, simply deriving more sophisti-
cated feasibility tests may not be sufficient to modify
a successful rectangle packing approach to also be
successful for irregular shapes.

Although there are an infinite number of different
rectangles with respect to their size and ratio of
length and width, the fact that all pieces are rectan-
gular allows you to cut down the potential place-
ment positions to a finite set. Where as the infinite
variety of sizes and shapes of simple polygons pro-
vide a much greater challenge. In the case of rectan-
gular pieces, it is easy to reduce the stock sheet to a
discrete set of candidate locations by defining a grid
of feasible placement positions by the largest com-
mon divisor of all the rectangular edges. The same
approach can be applied for instances where the
pieces only contain edges that are orthogonal to
each other and the edges of the stock sheet. How-
ever, if this is not the case then defining such a grid
can remove good solutions from the solutions space.
Hence, in all but the orthogonal case described
above, the stock sheet is continuous and for each
piece in the data set the number of feasible place-
ment positions on the stock sheet is infinite. As a
result, an implementation for nesting problems has
to embed mechanisms into the approach for reduc-
ing the solution space, preferably without removing
the best solutions. In addition to the increased
complexity of the solution space, the calculation of
feasibility of the solution is significantly more com-
putationally intensive. Hence, many fewer solutions
may be evaluated in the same run time. Other differ-
ences worth noting are that bounds can be more
easily found for rectangular problems (e.g. Beasley,
1985; Letchford and Amaral, 2001; Y and Kang,
2002) and potentially any rotation of the pieces
may be considered.

2.2. Why is the geometry important?

The most visible attribute of nesting problems
and the first obstacle researchers come up against
is the geometry. By this we mean answering the
question; given a position on the stock sheet of
two pieces, does this result in them overlapping,
touching, or are they separated? The answer to this
question is trivial to the human eye. To write a com-
puter programme to determine this information is
much more complex since the answer can only be
found from processing a set of vertices or in some
cases categories of pixels. Developing a set of tools
to assimilate the geometry is a non-trivial task and
potentially a barrier that stifles academic research
in this area. There exist a number of solutions to
this problem ranging from simple to complex. How-
ever, each has their idiosyncrasies. Determining
which is the most appropriate approach to imple-
ment is not just a matter of how well they perform,
but also how difficult they are to implement
robustly. Also the selected approach for solving
the nesting problem will impact the level of benefit
from time invested in implementing and pre-pro-
cessing highly efficient geometric tools. The remain-
der of this paper is dedicated to describing the most
common approaches found in the literature, these
are; the raster method, direct trigonometry, the nofit
polygon and the phi function.

3. Pixel/raster method

Raster methods are approaches that divide the
continuous stock sheet into discrete areas, hence
reducing the geometric information to coding the
data by a grid represented by a matrix. However,
different authors have used different codification
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schemes, which are largely driven by the place-
ment algorithm that will use this geometric infor-
mation.

Oliveira and Ferreira (1993) propose the simplest
coding scheme that uses the value of 1 to code the
existence of piece and the value of 0 to denote the
empty space, illustrated in (Fig. 2). Placing one
piece on the stock sheet is simply a matter of adding
the matrix of 0s and 1 s, which represents the piece,
to the matrix representing the actual layout. For a
certain position of the layout, the value of the corre-
sponding cell in the matrix gives the number of
pieces that occupy that position. If the value is
greater than 1 then overlap among pieces occurs.

Segenreich and Braga (1986) devised a different
codification scheme, that enables them to detect
contacting positions between pieces as well as over-
lap. In this case, the number 1 is used to code the
frontier of the pieces and the number 3 to code
the interior. After adding such a matrix to the
matrix layout, numbers greater than or equal to 4
Fig. 2. The 0–1 raster representation for irregular pieces.

Fig. 3. A non-Boolean raster repre

Fig. 4. Raster method proposed by Babu and Babu (2001): (a) stock sh
indicate infeasibility, in the form of a frontier-inte-
rior overlap or interior-interior overlap. Numbers
less than or equal to 2 code feasibility, with the
number 2 meaning a contact between two pieces
(Fig. 3).

Both anterior codifications denote the empty
space by 0 and use numbers greater than or equal
to 1 to code the piece itself. Babu and Babu (2001)
reverse this idea. Fig. 4a illustrates the coding of
an irregular stock sheet with defects. Here the pixels
completely within the interior of the stock sheet are
assigned a zero. Pixels that are outside or on the
boundary are coded with a number greater than
zero determined by assigning a 1 to the right most
non-zero pixel and cumulatively adding 1 moving
from right to left. Pieces are coded similarly but
the boundary of the piece is also assigned a zero,
as shown in Fig. 4b. The purpose of this coding is
that the value of each cell gives the number of cells
that it is necessary to move right so that a poten-
tially feasible placement is found. A particular ben-
efit is when using a bottom-left placement procedure
based on the pieces movement over the layout, as it
will allow many cells to be skipped in just one step.
However, actualising the layout from the matrix
representation is more complex and time consuming
when compared with the previous approaches. After
placing one piece on the stock sheet the respective
cell values of the stock sheet are changed from 0
sentation for irregular pieces.

eet with defects, (b) piece and (c) stock sheet with a piece placed.



Fig. 5. (a) If two polygons overlap, then the enclosing rectangles
of the pieces must overlap. (b) If two edges intersect then the
enclosing rectangles of the edges must intersect.
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to a positive value following the same codification
scheme, as illustrated in Fig. 4c.

The advantage of all the described raster meth-
ods is that calculating the distance a piece must shift
in order to eliminate infeasibility or where to place
two pieces so that they are in contact with each
other is just a matter of counting cells in the desired
direction. Also raster representations are simple to
code, can represent non-convex and complex pieces
as easily as simple polygons and are reasonably
fast when checking the geometric feasibility of
the layouts. However, the disadvantages are that
these methods are memory intensive and cannot
exactly represent pieces with non-orthogonal edges.
Increasing the representation’s accuracy by refining
the size of the grid unit leads to an increase in the
size of the matrices and results in greater memory
usage and running times for feasibility checks.

4. Direct trigonometry and the D function

Given that the raster representation cannot accu-
rately represent the irregular shape of the pieces, the
alternative is to use the polygons directly. When
representing the pieces as polygons the amount of
information is proportional to the number of verti-
ces and does not depend on the absolute size of the
pieces or of the layout. However unlike the raster
method, the feasibility or quality of a placement is
not implied by the geometry and as a result another
evaluation method must be employed. An obvious
candidate is to use direct trigonometry where there
exist well know tests for line intersection and point
inclusion. Although these tests are more computa-
tionally complex in comparison to the raster meth-
ods, run time cannot be directly compared. For
the raster method the time to check feasibility is
quadratic in the grid size, whereas for direct trigo-
nometry it is exponential in the number of edges
of the pieces.

In this section we describe an efficient approach
for evaluating overlap between two polygons using
trigonometry. We assume the pieces are represented
as a closed series of vertices and edges. Fig. 6 illus-
trates examples of the relative positions of the two
polygons that are identified by the approach.
Fig. 6c and d are the two instances where there is
overlap, the former can be identified through direct
analysis of edges and the latter by identifying that
one or more vertices of one polygon is inside the
other. However, before considering these tests, there
is a fast higher-level test that can be applied as
depicted in Fig. 5. Given that the bounding boxes
of the two polygons must overlap if there is to be
overlap between the polygons (Fig. 5a), then the
process can be made more efficient by first employ-
ing this simple test. This principle can be extended
to the bounding boxes of edges (Fig. 5b). Ferreira
et al. (1998) studied the effect of using bounding
boxes both at the polygon and edge analysis level
for 6 different benchmarks instances. A reduction
between 90.7% and 97.6% is reported for the
number of direct edge intersection tests required,
with a reduction ranging from 96.0% to 99.4% at
the edge analysis level. While the complexity of
the polygons impact on the effectiveness of the
edge bounding box test, Ferreira et al. found that
the percentage of reduction was never below 90%.
As a result we suggest the following hierarchy of
tests.

Test 1: Do the bounding boxes of the polygons
overlap?

No – polygons do not overlap (Fig. 6a)
Yes – apply test 2
Test 2: For each pair of edges from different poly-
gons, do their respective bounding boxes
overlap?

No for all – polygons do not overlap
(Fig. 6b)
Yes – for those edges with overlap apply test
3

Test 3: For each pair of edges from different poly-
gons, does the edge analysis indicate an
intersection?

No for all – apply test 4
Yes – as soon as one pair of edges indicate
an intersection then the polygons overlap
(Fig. 6c)
Test 4: For one vertex of each polygon, does that
vertex reside inside the other polygon?



Fig. 6. Examples of the relative position of two polygons identified by tests 1 to 4.
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No for both – polygons do not overlap
(Fig. 6e)
Yes for one – polygons overlap (Fig. 6d)
The bounding box test is a trivial operation of
comparing the minimum and maximum coordinates
of the polygon or edge bounding boxes. Preparata
and Shamos (1985) described a simple point inclu-
sion test that can be used as Test 4. Hence our focus
is on Test 3. The D-function has been demonstrated
as an efficient tool for characterising the relation-
ship between two edges. The relationship can then
be interpreted as to whether it indicates overlap.
First we will describe how the D-function character-
ises the edges.

The D-function can be defined as follows:

DABP ¼ððX A�X BÞðY A�Y P Þ�ðY A�Y BÞðX A�X P ÞÞ
ð1Þ

Proposed by Konopasek (1981), the D-function
gives the relative position of a point P with respect
to an oriented edge AB (Fig. 7). It is based on the
equation of the distance from a point to a
straight-line. The line is unbounded and is therefore
called a supporting line for the edge. Its interpreta-
tion is the following: if DABP > 0 then point P is on
the left side of the supporting line of edge AB; if
DABP < 0 then point P is on the right side of the sup-
porting line of edge AB; if DABP = 0 then point P is
on the supporting line of edge AB. This interpreta-
Fig. 7. Interpretation of the D-function.
tion assumes that the origin of the coordinate sys-
tem, where the coordinates (Xi,Yi) are defined, is
the bottom-left corner, i.e. the x-coordinates in-
crease to the right and y-coordinates increase
upward.

Mahadevan (1984) described how the relative
position of two oriented edges can be determined
using the D-function. In Table 1 the different cases
(a to j) that lead to an edge intersection or touch
are presented along with their description in terms
of their D-functions.

The supporting lines that correspond to the
bounded edges A, B and U, V are considered by
the D-function to be infinite. As a result for case
(j), where the two edges are collinear, the condition
presented above is a necessary but not sufficient
condition for the two edges to overlap. As a
result an additional test is required to identify if a
vertex of one edge lies in between the vertices of
the other.

Clearly when edges are touching but not overlap-
ping, the D-function does not provide a direct
answer to the question, do these polygons overlap?
The relationships, a to j, detailed in Table 1, only
indicate overlap under certain conditions. Hence a
second test must be applied. We assume that the
polygons have counter clockwise orientation, i.e.
that the interior of the polygon is on the left side
of the oriented edges, and that the oriented edge
AB belongs to one of the polygons and oriented
edge UV belongs to the other polygon, then the con-
ditions that indicate overlap, with reference to Table
1, are as follows:

1. Case (a).
2. Case (b), when A is on the left side of UV.
3. Case (c), when B is on the left side of UV.
4. Case (d), when U is on the left side of AB.
5. Case (e), when V is on the left side of AB.



Table 1
D-functions analysis of the relative position of two oriented edges

a DABU 5 0 ^ DABV 5 0 ^ DABU 5 DABV ^ DUVA 5

0 ^ DUVB 5 0 ^ DUVA 5 DUVB

A

B

U

V

A

B

U

V

A

B

U

V

A

B

U

V

A

B

U

V

A

B

U

V

A

B

U

V

b DABU 5 0 ^ DABV 5 0 ^ DABU 5 DABV ^ DUVA 5 0 ^ DUVB = 0
Additionally, if DUVA < 0 then A is on the right side of the oriented edge
UV and if DUVA > 0 then A is on the left side of the oriented edge UV

A

B

U

V

A

B

U

V

c DABU 5 0 ^ DABV 5 0 ^ DABU 5 DABV ^ DUVA = 0 ^ DUVB 5 0
Additionally, if DUVB < 0 then B is on the right side of the oriented edge
UV and if DUVB > 0 then B is on the left side of the oriented edge UV

A

B

U

V
A

B

U

V
A

B

U

V
A

B

U

V
A

B

U

V
A

B

U

V
A

B

U

V

d DABU 5 0 ^ DABV = 0 ^ DUVA 5 0 ^ DUVB 5 0 ^ DUVA 5 DUVB

Additionally, if DABU < 0 then U is on the right side of the oriented edge
AB and if DABU > 0 then U is on the left side of the oriented edge AB

A

B

UV
A

B

UV
A

B

UV
A

B

UV
A

B

UV
A

B

UV
A

B

UV

e DABU = 0 ^ DABV 5 0 ^ DUVA 5 0 ^ DUVB 5 0 ^ DUVA 5 DUVB

Additionally, if DABV < 0 then V is on the right side of the oriented edge
AB and if DABV > 0 then V is on the left side of the oriented edge AB A

B
U

V

A

B
U

V

A

B
U

V

A

B
U

V

A

B
U

V

A

B
U

V

A

B
U

V

f DABU 5 0 ^ DABV = 0 ^ DUVA 5 0 ^ DUVB = 0
Additionally, if DABU < 0 then U is on the right side of the oriented edge
AB and if DABU > 0 then U is on the left side of the oriented edge AB

A

B

U

V

A

B

U

V

A

B

U

V

A

B

U

V

A

B

U

V

A

B

U

V

A

B V

g DABU 5 0 ^ DABV = 0 ^ DUVA = 0 ^ DUVB 5 0
Additionally, if DABU < 0 then U is on the right side of the oriented edge
AB and if DABU > 0 then U is on the left side of the oriented edge AB

h DABU = 0 ^ DABV 5 0 ^ DUVA 5 0 ^ DUVB = 0
Additionally, if DABV < 0 then V is on the right side of the oriented edge
AB and if DABV > 0 then V is on the left side of the oriented edge AB

i DABU = 0 ^ DABV 5 0 ^ DUVA = 0 ^ DUVB 5 0
Additionally, if DABV < 0 then V is on the right side of the oriented edge
AB and if DABV > 0 then V is on the left side of the oriented edge AB

j DABU = 0 ^ DABV = 0
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6. Case (f). In this case it is necessary to look ahead
in both polygons and use edges BC and VZ,
respectively. Additionally one of the following
conditions must hold in order to have an overlap
between the two polygons (Fig. 8):

(i) DABC < 0 ^ DABU < 0
(ii) DABC < 0 ^ DBCU < 0
(iii) DABC > 0 ^ DABU > 0 ^ DBCU > 0
(iv) DUVZ < 0 ^ DUVA < 0
(v) DUVZ < 0 ^ DVZA < 0
(vi) DUVZ > 0 ^ DUVA > 0 ^ DVZA > 0

No other case concerning the superposition of two
vertices (g,h, i) needs to be analysed as all those



(i) (ii) (iii)

(vi) (v) (vi)

Fig. 8. Cases in which B touches V and overlap exists between
the respective polygons.
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cases lead, in the previous or in the next edge, to
case (f).

7. Case (j) when the oriented edges AB and UV

have the same direction and the two edges over-
lap. These additional conditions are not verifiable
by the use of the D-functions, but can be tested
simply by comparing coordinates.

Employing the D-function to deal with the geo-
metric level of nesting problems provides an accu-
rate approach, in the sense that polygons are
exactly represented. However, from the viewpoint
of computational effort, calculations must be per-
formed with floating-point units, which is much
slower than addressing memory positions and sum-
ming integers (raster representation). Moreover,
each time a polygon’s position is changed, the feasi-
bility of the placement must be checked. As a result,
all these calculations have to be repeated from
scratch and performed during the search for a pack-
ing arrangement. Hence, this approach does not lend
itself to nesting algorithms based on any iterative
search process since the time spent on evaluating
the geometry can restrict the time, and therefore
the extent, of the search. However, constructive
algorithms, for instance approaches that build solu-
tions based on a previously defined sequence of
pieces, may quite efficiently use D-functions to tackle
the geometric issues of nesting problems.

5. The nofit polygon

The nofit polygon has become an increasingly
popular option for dealing with the geometry since
it is more efficient than direct trigonometry, partic-
ularly when using an iterative search, yet shares
the benefit of accuracy by using the original edges
of the polygon. In addition, the concept opens up
new options for placement strategies. In essence
the NFP is a polygon derived from aggregating
the two component polygons. It can be used, along
with the vector difference of the position of the two
polygons, to determine whether these polygons
overlap, touch, or are separated, by conducting a
simple test to identify whether the resultant vector
is inside the NFP. Such a test has complexity
O(n), where n is the number of edges in the NFP,
assuming the calculation of the NFP is performed
in a pre-processing phase. The computational effi-
ciency gained by utilising this concept is very attrac-
tive. However, the significant drawback of this
approach is due to the difficulties in developing a
robust NFP generator for general non-convex poly-
gons. Three core approaches exist in the cutting and
packing literature; the orbiting algorithm of
Mahadevan (1984), later improved by Whitwell
(2005); Minkowski sums used by Milenkovic et al.
(1991) and Bennell et al. (2001), (in both cases moti-
vated by the work of Ghosh (1991)); and decompo-
sition into star shaped polygons (Li and Milenkovic,
1995) or convex polygons (Watson and Tobias,
1999; Agarwal et al., 2002). Each approach will be
briefly explained in the following sections after a
more detailed discussion of the properties and appli-
cation of the NFP.

5.1. NFP – what is it and how does it work?

The NFP of two polygons A and B, denoted as
NFPAB is the resulting polygon from a sliding oper-
ation between A and B where each has a specific role
within the operation. Both polygons have fixed ori-
entation. A has a fixed position where the origin is
assumed to be at (0,0), B is the tracing polygon that
moves around the perimeter of A to perform the
sliding operation. The NFP is defined by placing
B in a touching position with A and marking the
locus of a reference point on B as it traces around
the boundary of A. The tracing motion is performed
in such a way that A and B always touch, but never
overlap. The locus of the reference point forms a
closed path that is NFPAB. Fig. 9a illustrates this
tracing movement. If the roles are reversed then
the resulting NFP, NFPBA is NFPAB rotated by
180�. Clearly while A is fixed at (0, 0), if B is placed
so that the reference point is inside NFPAB then A



B
A

A

B

Origin of A
and NFP

Reference 
point on B

Origin of A
and NFP

Fig. 9. (a) Tracing movement of polygon B around A to form the
NFP, (b) the orientation of A and B and (c) the order of the
slopes of A and B, (d) the NFP.
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and B overlap and if the reference point is on the
boundary then A and B touch. Thus the interior
of NFPAB represents all intersecting positions of A

and B. This result can be extended for the case when
the position of A is not restricted to (0, 0). If A is
moved to position (x,y) then the position of the ref-
erence point of B must first be transposed by
(�x,�y) before testing its relative position with
NFPAB. Hence overlap between two polygons can
be identified by testing whether the result of sub-
NFPAB

A

A

B

B

a

c

Fig. 10. Combinations of polygons the generate multiply-connected N
cannot slide into the concavity. (b) NFP where B slides into concavity i
inside concavity but cannot slied into the concavity.
tracting the position of the origin of A from the ref-
erence point of B is inside NFPAB.

Cuninghame-Green (1989) presents a simple
algorithm for calculating the NFP for purely convex
polygons. Although convex polygons are the sim-
plest case, this paper is a good starting point for
understanding the NFP. Two key ideas are devel-
oped. First, the different roles of each polygon are
recognised, and as a result the polygons must have
different orientations (Fig. 9b). We will adopt the
convention that polygon A (fixed polygon) is coun-
ter clockwise and polygon B (orbiting polygon) is
clockwise. Second, the order of the edges of the
NFP of two convex polygons is equivalent to sort-
ing the edges of both polygons in slope order
(Fig. 9c and d). These ideas provide a good founda-
tion for understanding the approaches of both
Mahadevan (1984) and Ghosh (1991).

While both polygons are convex, the concept and
its realisation are quite simple. However, the diffi-
culties arise when one or both of the polygons con-
tain concavities. A pair of polygons that are able to
reach all non-intersecting touching positions
through sliding are termed as relatively simply con-
nected polygons, and the resulting NFP will be sim-
ply connected. Pairs of polygons that do not have
this property may be simply connected themselves
but not relative to each other and result in an
NFP that contains a hole, defined as a multiply
connected polygon. Some examples of the more
difficult cases are illustrated in Fig. 10. Although
B

A NFPAB

NFPAB

b

FPs. (a) NFP where B can fit, with space, inside concavity but
n one direction only and (c) NFP where B can fit at a single point
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the example in Fig. 10b is not strictly multiply con-
nected, it is included here to illustrate another of the
more difficult cases for generating the NFP.
B
B

Fig. 12. Sliding edge of A projected from vertices of B to find
minimum intersection distance.
5.2. Sliding algorithm

Mahadevan (1984) proposed a sliding algorithm
that models the motion of the tracing polygon
around the fixed polygon. In order to ensure the
algorithm begins at a point where there is no over-
lap, the largest y-coordinate of the tracing polygon
(B) is placed touching the smallest y-coordinate of
the fixed polygon (A). The reference point on B at
its starting position defines the first vertex. Each
of the following vertices are defined in a counter
clockwise direction by identifying which vertex edge
combination will slide against each other and the
distance available to slide. Both are determined
through the use of the D function (discussed in
Section 4).

As the direction in which the NFP will be created
is predetermined, there exist three possible scenarios
for sliding; vertex ai against edge bj, bj+1, vertex bj

against edge ai, ai+1 or edge ai, ai+1 against edge
bj, bj+1. These are illustrated in Fig. 11. If the edges
have the same slope then the third option is selected,
otherwise the edge with the shallowest slope deter-
mines the sliding edge. Mahadevan (1984) uses the
D-function where the line is the edge of one polygon
(for example ai, ai+1) extended in both directions
and the point is the vertex that defines the end of
the edge on the other polygon (for example bj+1).
The side of the line at which the point is located
determines the sliding edge/vertex combination.
When there are concavities within either polygon,
travelling the full length of the sliding edge may
result in overlap between the polygons. To detect
such situations and calculate the available sliding
distance, each vertex of B is projected the magnitude
and direction of the sliding edge (Fig. 12). The D

function is used to test for intersections between
bj+1

bj+1
bj+1

ai

A

b j

B

a i

A
ai+1 ai+1 ai+1

a i

A

B B

b jb j

Fig. 11. Scenarios for edge vertex sliding combination.
the projected edge and the edges of A. The projec-
tion is also executed in the opposite direction for
the vertices of A and polygon B. For those that
intersect, the minimum distance from the original
position to the point of intersection is the maximum
distance available to move along the sliding edge
without overlap.

This approach as described by Mahadevan
(1984) only holds for pairs of polygons that are rel-
atively simply connected polygons. The outer
boundary of the NFP can be found for instances
such as that illustrated in Fig. 10, but not the holes
or points of fit. Whitwell (2005) extended Maha-
devan’s approach in order to address this drawback.
The basic premise is that, if an edge of a polygon
has not been traversed when executing Mahad-
evan’s approach then these edges potentially repre-
sent a hole. If a feasible starting point for the
sliding algorithm can be found on the unvisited
edges then the equivalent sliding operation, in
clockwise direction, can be performed to find the
boundary of the hole (or inner-fit polygon).

The first step of Whitewell’s orbiting approach
essentially follows that of Mahadevan with a modi-
fied implementation to speed up the edge-pair detec-
tion process. In addition, any edge traversed during
this process is flagged. Edges of A and B that are not
flagged are then evaluated in the second stage for
feasible starting points. There are two elements to
this procedure, first is to find an edge-vertex pair
that could potentially yield a valid start point, the
second is to find a valid start point along the edge.

All edges that are not flagged are considered.
Given there is an edge from A that is not flagged,
then the vertices from B that can slide along that
edge are identified by evaluating whether the edges
that connect at that vertex are both on the right side

of the edge of A. If they are both on the left side or
one of the left and one on the right, there is no pos-
sibility for feasible sliding between the edge and that
vertex. Fig. 13 illustrates this.



bi
bi

bi

bj

bj bj

a
aa

Fig. 13. (a) bi and bj on right side of a, (b) bi on left bj on right
side of a, (c) bi and bj on left side of a.
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Assuming a vertex from B whose connecting
edges are both on the right side is found, then the
edge and vertex are placed touching and a test is
performed for overlap. If there is overlap, then poly-
gon B is translated along the edge in order to find a
feasible start point. The translations are determined
through an analogous approach to Mahadevan’s
method, only here overlap is being detected and
resolved rather than avoided. Hence the translation
vector derived from the edge being searched is pro-
jected from the vertices of B and the closest intersec-
tion with an edge of A is recorded, and also from the
vertices of A, recording the closest edge intersection
with B. Polygon B is then translated through the
smallest intersection distance and the position is
again tested for overlap. This is done repeatedly
until a feasible start point is identified or the entire
edge has been searched. Fig. 14 provides an example
of this procedure. Once a feasible start point is
found, the boundary of the hole is determined by
the same orbiting approach as in stage one, flagging
edges along the way. All edges that are not flagged
are examined in this way for feasible start points.
Clearly if the polygons are complex in terms of
number of edges and concavities, this process can
be quite computationally expensive.
5.3. Minkowski sums

The concept and theory of Minkowski opera-
tions comes under the more general field of mor-
phology. The morphological operation that forms
closest intersectio

bi

bj

a
b

a

Fig. 14. Whitwell (2005) approa
the basis of this technique to find the NFP is termed
dilation. Dilation grows the image set A through
vector addition with set B, and is denoted as A/B.
The dilation operator may also be called Minkowski
addition defined as follows.

5.3.1. Definition: Minkowski addition in R2

Let A and B be two arbitrary closed sets of vector
points in R2. S is the resulting sum of adding all vec-
tor points in A with those in B. Then the Minkowski
sum, S, is defined as

S ¼ A� B ¼ faþ bja 2 A; b 2 Bg:

The union of geometric translations of sets can also
define Minkowski addition. If Ab denotes set A

translated by vector b then

S ¼ A� B ¼
[
b2B

Ab:

The above definition assumes the same orientation
for both polygons and as a result will not produce
the NFP. However, if polygon B is transposed into
its symmetrical set B 0 = {�b : b 2 B} then A and B 0

have the same orientation then A/B 0 will result in
the NFP. Stoyan and Ponomarenko (1977) first for-
malised the relationship between Minkowski sums
and a more rigorous proof can be found in their
paper. They termed the NFP as the hodograph.
Proof of this relationship is also discussed in Mile-
nkovic et al. (1991) and Bennell (1998) who describe
it as the Minkowski difference.

In order to use Minkowski sums and its relation-
ship with the NFP, the realisation of the above def-
inition needs to be formulated into a procedure to
obtain the NFP. Ghosh’s (1991) develops a set of
Boundary Addition Theorems for both the convex
case and non-convex case that underpin his method
of obtaining the Minkowski sum. These demon-
strate that there is sufficient information in the
boundary of the polygons to obtain the boundary
of the Minkowski sum. The theorems also support
the use of slope diagrams that form the basis of his
approach, for representing the Minkowski sum.
bi

bj

a

n

bi

j

ch for finding start points.



408 J.A. Bennell, J.F. Oliveira / European Journal of Operational Research 184 (2008) 397–415
See Ghosh (1991) for a detailed explanation of these
theorems and Bennell (1998) for a discussion of the
approach with respect to the NFP.

In order to explain Ghosh’s approach a simple
example will be used as shown in Fig. 15. Polygon
A has one concavity and polygon B is convex. The
figure also contains the slope diagram for each poly-
gon, the merged slope diagram for the NFP and the
NFP itself. Marking each edge on the diagram
according to its slope and orientation creates the
slope diagram. B has the opposite orientation to
A, hence the edge numbers appear in reverse order
when traversing the slope diagram in the counter
clockwise direction. Note that the slope diagram
for B places the edges in (reverse) numerical order.
This is due to the convexity of B. Hence, when both
A and B are convex sorting their edges into a single
a1

a3
a4

a5

a

a2

a2

a1

a7

a3

a4

a6

a5

b2b4

b3

b1

a2 a3

a7

a1

b1 -b1

b2

b3

b4

b4

b1

a6

a4

a5

Merged list : b1, a7, b4, a1, b3, a2, b

A

-B b3

b2

Fig. 15. Calculation of the NFP of one
list by slope order will also retain the sequential
order of the edges of both polygons. This is equiva-
lent to the approach of Cuninghame-Green (1989).
Since A is not convex the edges do not appear in
sequential order. However, when visualising the
motion of the tracing polygon as it slides around
the fixed polygon, intuitively the edges will be
encountered in numerical order. As a result the
slope diagram is not a circle but modified to traverse
the edges in their sequential order.

The NFP is defined by merging the two slope dia-
grams in which the order of the edges for both poly-
gons must be retained. With reference to the
example in Fig. 15, beginning at a1 we see that b3

has the same slope and so they are marked together
on the slope diagram. Following the counter clock-
wise direction the next edge is a2 followed by b2 and
a2

a4

a5

a3

a6

a7

a1

6

a7

b1

a4

a5

a6

-b1

b1

2, a3, b1, a4, a5, -b1, a6

NFPAB

b1

concave and one convex polygon.
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a3. Next a5 is encountered but cannot be included
before a4. Therefore the traversal goes straight to
a4 passing and including b1 along the way and then
returns to a5 and on to a6. However, in order to get
from a4 to a5 to a6 b1 is passed a second time in the
opposite direction and so b1 is included again but
with a negative sign. Finally b1 is included a third
time on the traversal between a6 and a7 and b4.
The resulting NFP and final merged list is detailed
at the bottom of Fig. 15. Note that for each polygon
the edges retain their sequential order where
changes in direction are permitted. The resulting
NFP is not a simple polygon but has some internal
edges or loops. This is an inevitable result of the
boundary addition theorem and is explained in
more detail in Ghosh (1991). These loops need to
be examined with respect to their orientation as they
may represent holes in a multiply connected poly-
gon. This is dealt with by Ramkumar (1996), Ben-
nell (1998) and Bennell and Song (2005).

The above method can be extended to the case
where neither polygon is convex, provided the con-
cavities do not interfere with one another. If, how-
ever two concavities interact then there will be
areas of the slope diagram where both sets of edges
are not in sequential ordered. Ghosh (1991) deals
with this by splitting the slope diagram into parallel
paths, one for each concavity that interacts, where
each path through the slope diagram defines a poly-
gon. The NFP is the union or outer face of these
polygons. Although the theory of traversal by paral-
lel paths holds true, there are considerable imple-
mentation problems in sorting out paths with
more complex instances.

Bennell et al. (2001) propose an approach that
extracts key elements of Ghosh’s approach and
develops a set of algorithmic steps that produce a
single path through the slope diagram to produce
the NFP. Their approach is based on the observa-
tion that the simple-convex case can easily be dealt
with by Ghosh’s approach. As a result, their
approach first replaces B by its convex hull, denoted
as conv(B), and solves the simpler case of finding
the NFP of a simple and convex polygon, denoted
as NFPAconv(B). To obtain NFPAB the convex edges
that replaced the concavity in the convex hull are
substituted with the original edges from the concav-
ity plus any A edges that are traversed wherever
they appeared on the slope diagram.

Bennell and Song (2005) illustrate some draw-
backs of the Bennell et al. (2001) algorithm, and
present some modifications to provide a more
robust approach. Instead of generating the convex
hull and then repairing the resulting NFP, they pro-
pose an approach that retains the concavities of the
polygons but partitions one of the polygons into
groups of sequential edges according to whether
they are convex or concave. Each of the groups
can then be individually merged with the slope dia-
gram of A without conflict and then linked. Since
the groups are not a complete cycle, the starting
edge must be the first B edge in the group. Given
the groups will be linked, it is necessary to finish a
group moving forward in a counter clockwise direc-
tion, equivalent to a positive B edge. Since B edges
may appear more than once, the leading B edge
must be positive and result in its final appearance
also being positive (e.g. +bi, �bi, +bi). When com-
bining the merged lists, linking edges need to be
included in order to maintain the precedence order
of the edges in each polygon.

Fig. 16, provides an example of their approach.
The edge points of B can be divided into the follow-
ing five groups according to their appearance in
consecutive counter clockwise direction (convex)
or clockwise direction (concave) on the slope dia-
gram (Fig. 16b).

1. b12, b1, b2 (counter clockwise)
2. b3, b4 (counter clockwise)
3. b5, b6, b7 (counter clockwise)
4. b8 (clockwise)
5. b9, b10, b11 (counter clockwise)

For each group the precedence order of A edges is
followed, searching for the next B edge in the group.
First, by sorting A and the group of B edges into
slope order, merging the lists and following the pre-
cedence of A, the starting B edge and the number of
traversals of each edge can be determined. For exam-
ple for group 1 (Fig. 16c), begin with the first B edge
on the list, b12, at the occurrence that follows a1. The
next B edge is b1, following the path of A, traverse
b12, a2, a3, �b12, a4, b12, a5, a6, b1. Note that the
admissible B edges that can be included are either
�b12 or b1, if other B edges had been encountered
on route to b1, they would have been ignored. This
can be observed in other groups. Next, search for
b2, which is encountered directly after b1. Although,
b12, b1 and b2 have been found, according to the ini-
tial count each must be traversed three times, hence
the search continues through a7,�b2, a8,�b1, a9, a10,
b1, a11, b2. In order to link each group, some addi-
tional A edges need to be added. For group 1 the
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Fig. 16. Example to illustrate Bennell and Song (2005) approach.
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final A edge is a12 and the first A edge in group 2 is a7,
hence the path returns through �a12 to �a7 to retain
the precedence order. The full edge list is detailed
below, where the A edge that precedes the starting
B edge is included in square brackets to indicate
the starting point, but is not part of the edge list.
The linking edges are underlined.

1. [a1], b12, a2, a3, �b12, a4, b12, a5, b1, a6, b2, a7, �b2,
a8, �b1, a9, a10, b1, a11, b2, �a11, �a10, �a9, �a7

2. [a6], b3, b4, a7, �b4, a8, �b3, a9, a10, a11, b3, b4,
�a11, �a10, �a9, �a7

3. [a6], b5, a7, �b5, a8, a9, a10, a11, b5, a12, b6, a1, b7,
a2, �b7, a3, �b6, a4, b6, a5, b7, a6, a7, a8, a9, �b7,
a10, b7, �a10, �a9, �a7, �a6, �a5
4. [�a5], b8, �a4, �b8, �a3, �a2, b8, a2, a3, a4, a5

5. [a6], b9, a7, �b9, a8, a9, a10, a11, b9, a12, b10, a1, b11,
a2, �b11, a3, �b10, a4, b10, a5, b11, a6, a7, a8, a9,
�b11, a10, b11, �a10, �a9, �a7, �a6, �a5, �a4,
�a3, �a2

The resulting Minkowski sum is a complex (self
crossing) polygon where the edges include all the
edges of the NFP and some internal points. The
edges that are internal need to be removed. Note that
this procedure will find holes and exact fit, as illus-
trated in Fig. 10, as well as the boundary. Bennell
and Song (2005) explain that the negative edges
and linking edges cannot be part of the boundary
of the NFP and can be removed. As a result the



J.A. Bennell, J.F. Oliveira / European Journal of Operational Research 184 (2008) 397–415 411
sequence of edges is broken up into polygonal

trips.
The next step identities all the intersection points

between the polygonal trips, and flags them with a
‘�’, indicating it is entering the trip, or with a ‘+’,
indicating it is leaving the trip. Consider the example
in Fig. 17a, where the current trip is trip 2. Imagine
standing at the beginning of the first edge of trip 2
facing along the edge, then consider that trip 1 inter-
sects trip 2 from right to left. Trip 1 is said to enter

trip 2 and is marked with ‘�’. Continuing along trip
2, eventually intersection with trip 4 is found, where
trip 4 intersects from left to right. Trip 4 is leaving

trip 2 and marked with ‘+’. Hence, entering a trip
means the beginning part of the intersecting edge
is on the right side of the trip edge and leaving cor-
responds to the beginning part of the intersecting
edge is on the left side of the trip edge. The frag-
ments of trips that span a ‘�’ intersection to a ‘+’
intersection are kept to form the boundary of the
NFP. All other fragments are discarded.
3
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Fig. 17. Procedure for removing internal edges from the Minkowski s
(b) truncate each trip retaining parts between ‘�’ and ‘+’, (c) repeat an
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Fig. 18. Different origins of the same NFP
5.4. The origin

The method described above results in the shape
and orientation of the NFP but not its position. In
order to use the NFP to determine overlap there
must exist an origin from which the position of each
polygon is measured. This cannot be arbitrarily set
but is determined with respect to the origin of the
original pieces. Fig. 18 illustrates three different ori-
gins of the NFP with respect to different origins on
the original polygons, where the origin of the trac-
ing polygon, B, is the reference point that traces
the NFP.

For an arbitrary position of the origin of A and
reference point of B, the origin of the NFP can be
determined by placing A and B touching such that
a vertex of B will slide along an edge of A, edge a1

in Fig. 18. The roles of each polygon is important
since edges of B are replicated in the NFP in their
opposite orientation. Edge a1 can be found in the
NFP and represents the path of the reference point
3

-
3
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4

1

um. (a) Identify each intersection as entering or leaving the trip,
d link parts.
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Fig. 19. Calculation of the NFP using convex decomposition.
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as B slides along edge a1. By positioning A and B

touching at the start of a1 and aligning the start of
a1 in the NFP at the reference point of B, the origin
of the NFP is given by the origin of A.

In the case of assigning the bottom left corner of
the enclosing rectangle of both component polygons
as the origin, then the origin of the NFP is found at
the top right corner of the enclosing rectangle of the
tracing polygon if it is placed at the bottom left cor-
ner of the enclosing rectangle of the NFP. The theory
that underpins this can be found in Bennell (1998).

5.5. Decomposition

Given the complexity of obtaining the NFP when
concavities between polygons interact, an alterna-
tive approach is to decompose them into a number
of more manageable shapes. Watson and Tobias
(1999) and Agarwal et al. (2002) decompose simple
polygons into convex sub-polygons. As described by
Cuninghame-Green (1989) the NFP of two convex
polygons can be calculated quickly and easily and
is also a convex polygon. Li and Milenkovic
(1995) decompose into star shaped polygons. A star
shaped polygon is one that contains at least one
point, called the kernel, such that a line drawn
between that point and any point on the boundary
is wholly contained within the polygon. Li and
Milenkovic show that the Minkowski difference of
two star shaped polygons is also a star shaped poly-
gon. Both decomposition methods are attractive as
they remove the requirement of detecting holes
when calculating the NFP of each pair of decom-
posed parts of the polygons. Here we will focus on
convex decomposition.

The principle of these approaches is to decom-
pose each polygon into convex sub-polygons, gener-
ate the NFP of each pair of sub-polygons where the
members of the pair arises from different polygons,
and finally combine the NFPs of the sub-polygons
to generate the NFP of the two original polygons.
The approach can be illustrated by considering
Watson and Tobias (1999). They decompose a sim-
ple polygon into a set of convex polygons by cutting
between pairs of concave vertices. If there are an
odd number of concave vertices then the last cut is
between a concave and a convex vertex. The NFP
of each sub-polygon can be found by the simple
edge sorting procedure described earlier in the
paper. The final step is to combine the sub-NFPs
into one polygon. Such a procedure requires the
identification of all edge intersections, since these
may form vertices of the final NFP, and removal
of the redundant edges (i.e. edges contained inside
one or more sub-NFPs and therefore not part of
the boundary). An example of how two concave
polygons might be decomposed into convex sub-
polygons and reconstructed into the NFP is given
in Fig. 19.

An important feature to note with such an
approach is arranging the origins of each sub-NFP
according to the relative origins of the decomposed
parts in order to form the NFP. In the example
given in Fig. 19 both polygons have a single concave
vertex and are thus decomposed into two convex
polygons. Each sub polygon has an origin at its bot-
tom left corner, marked on the figure by a dot.
Hence the origin of the sub-NFPs is found at the
top right corner of Bi as described in the previous
section. Fig. 19 illustrates each sub-NFP (NFPA1B1,
NFPA1B2, NFPA2B1, NFPA2B2) and their origins
marked as o, p, q and r respectively. When recon-
structing the sub-NFPs the position of their origin
is determined by the vector difference a � b of the
origins. In the example the origin of A1 and B1 is
at (0, 0) and therefore the origin o of NFPA1B1 is
at (0,0) i.e. equivalent to the origin of the NFP.
B2 is at (1,1) and so p is placed at position (�1,
�1) relative to the origin on the NFP. A2 is at
(1,0) and so q is placed at position (1,0) and r is
placed at position (0, �1).

Clearly the advantage of this approach is found
in removing the difficulty of the NFP generation
operation. However, the price of this simplification
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is the complexity of the decomposition and combin-
ing phases. Also, the effectiveness of the decomposi-
tion phase has a direct effect on the efficiency of the
combining phase. For example, if A is decomposed
into p sub-polygons and B decomposed into q sub-
polygons then p · q sub-NFPs need to be found
and assembled in the correct way to form NFPAB.
It stands to reason that the fewer sub-polygons
required to decompose the polygon, the fewer sub-
NFPs are generated and as a result the fewer edges
need to be analysed for intersection and inclusion in
the combining process. However, decomposing a
polygon in to the minimum number of convex poly-
gons is significantly more computationally expen-
sive than greedy methods. Agarwal et al. (2002)
evaluate this issue further by experimenting with a
range of different decomposition methods including
triangulations, optimal decomposition and heuris-
tics, in order to examine the effect on computational
time. They found that although optimal decomposi-
tion in general significantly reduces the computation
time for the Minkowski sum construction, the
decomposition is computationally expensive and
heuristics that approximate optimal decomposition
are preferred. In addition they discovered that the
relationship between the number of convex sub-
polygons and the time to construct the final NFP
was not a straight forward trade-off. Experimenta-
tion demonstrated that the relationship between
the two polygons to be summed impacts on the
Minkowski sum construction. Hence, they decom-
pose the polygons simultaneously in order to mini-
mise a cost function that takes account of this
relationship. Other issues that arise from the con-
struction phase are the identification of degenerate
cases as illustrated in Fig. 10b and c. Case 10b
would be represented by co-linear edges not con-
tained in any sub-NFP, and 10c would be found
at an intersection point of more than two edges
not contained in any sub-NFP. These instances
would all need to be tested directly.

5.5.1. Summary

The NFP is an efficient tool for detecting the rel-
ative position between pieces. However, calculating
the NFP is a non-trivial task and software to do this
is not publicly available. Hence many researchers do
not exploit the benefits of the NFP due to the signif-
icant investment in developing the tools required. In
addition all the approaches above have their limita-
tions. Mahadevan’s approach can not identify nest-
ing positions that would result in a multiply
connected NFP; Ghosh’s approach overcomes this
but can become complex resulting in many internal
loops. In addition, instances where one piece fits
exactly into a nested concavity would be defined
as a point or line within the NFP. Mechanisms to
identify the orientation of this type of ‘‘loop’’ lar-
gely resort to direct testing (Bennell and Song,
2005; Whitwell, 2005).

6. Phi function

The phi-function is the most recent innovation in
dealing with the geometric issues for nesting prob-
lems. Its purpose is to represent all mutual positions
of two objects (in this context polygons), and there-
fore it is often associated with the NFP. However,
this association is misleading as the NFP is only a
special case of the broader theory. The Phi-function
for cutting and packing were conceived and applied
by Stoyan et al. (2001, 2004) and this research group
continue to be the main users of this methodology.
The lack of an algorithmic process for generating
the phi-function for arbitrary shapes may explain
why this approach has not been more broadly
adopted. However, the phi-function is a powerful
tool that warrants further research in order to facil-
itate its use in the wider research community. In this
section we will simply illustrate the concept and its
application. See the original papers for detailed der-
ivation of the mathematical functions.

The phi-function is a mathematical expressions
that represent the mutual positions of two objects.
Specifically the value of the phi-function is greater
than zero if the objects are separated, equal to zero
if their boundaries touch and less than zero if they
overlap. When the phi-function is normalised its
value is the Euclidean distance between the two
objects, otherwise it is an estimate of the distance.
Stoyan et al. derive the phi-function for primary
objects; these are circles, rectangles, regular poly-
gons, convex polygons and the compliment of these
shapes. Shapes that are not primary objects can be
represented as a union or intersection of the primary
objects. Note that this is not decomposition since
overlap of primary objects is permitted. Hence we
will focus here on the phi-function for primary
objects. The derivation of the functions is based
on trigonometry, and as far as we are aware, they
are derived by hand.

As an example we will consider the case of two
circles. Intuitively the centre of the circles must be
at least the sum of the radii apart for the circles to
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Fig. 20. Representation of all touching positions of two circles.
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Fig. 22. Two instances of the Phi-function.
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not overlap. This is illustrated in Fig. 20 where circle
1 as radius r1 and circle 2 has radius r2. Assuming
circle 1 is fixed at co-ordinate position (0,0), the
equation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ r1 þ r2 describes all the co-

ordinate positions of circle 2 (x,y) such that the
two circles touch but do not overlap. Clearly if the
circles were separated then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
> r1 þ r2, and

the difference would be the Euclidean distance
between the circles. Hence the phi-function can
be directly stated as: Uðx;yÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ y2

p
�ðr1þ r2Þ.

Finally if we remove the assumption that circle 1
is fixed at (0,0) but instead is placed at co-ordinate
point (x1, y1) and circle 2 is placed at co-ordinate
point (x2,y2), then we need to translate both circles
through (�x1, �y1) so that circle 1 is again at the
origin and circle 2 has the equivalent relative posi-
tion to circle 1. Therefore we can state the phi-func-
tion for two circles at arbitrary positions as follows:

Uðx1;y1;x2;y2Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2� x1Þ2þðy2� y1Þ

2
q

�ðr1þ r2Þ

Fig. 20 illustrates the phi-function only for the
instance when U(x,y) = 0, where x = x2 � x1, y =
y2 � y1, which is also the NFP. We can also plot
the value of U(x,y) over all possible values of
(x,y) on a three dimensional graph, as in Fig. 21.

Two circles is the simplest case since the phi-func-
tion can be derived from a single function. Other
primary objects require a series of functions where
the function that should be used to obtain the value
of the phi-function dominates the other functions
through being either the maximum or minimum.
For example, the NFP of two rectangles is simply
a rectangle, and mathematically each side of the
rectangle is part of the phi-function. The relevant
function depends on whether the moving rectangle
is above, below, to the right or to the left of the fixed
rectangle. If each edge of the rectangle and the posi-
tion of the orbiting rectangle defines an equation
where its value is positive if the orbiting rectangle
is on the side of the line that is outside and negative
when it is on the side that is inside, then the maxi-
mum of these four functions will give the phi-func-
tion. However, as the rectangles move apart a new
region of the phi-function emerges, where the mov-
ing rectangle is not purely to the side or purely
above or below. In these regions a new set of func-
tions are required. This is illustrated in Fig. 22
where the NFP or U(x,y) = 0 is a rectangle and
U(x,y) > 0 is a rectangle with curved corners.

Stoyan et al. (2001) describe how to derive the
phi function for not only all the primary objects
but also the complement of the primary objects,
which is equivalent to the containment problem.
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This concept appears to have great potential for
contributing to the advancement of the field of nest-
ing problems. However, the process of obtaining the
phi-function has thus far acted as a barrier to wider
adoption of this approach.

7. Conclusion

The paper has given a detailed description of the
operations of a number of different approaches for
dealing with the geometry required in the solution
of nesting problems, these are; the raster method,
direct trigonometry, the Nofit polygon and phi-
functions. Each has its advantages and limitations
and a common theme is that the more computation-
ally efficient the approach the more complex it is to
realise. There is no doubt that there is a significant
investment required in order to develop the geomet-
ric tools necessary for tackling nesting problems.
However, we hope that through this paper some
of the mystery of these approaches has been dis-
pelled and researchers are able to make an informed
choice when selecting their methodology.
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